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Abstract. We analyze a generalization of the quantum Calogero model with the underlying conformal sym-
metry, paying special attention to the two-body model deformation. Owing to the underlying SU(1, 1)
symmetry, we find that the analytic solutions of this model can be described within the scope of the
Bargmann representation analysis, and we investigate its dynamical structure by constructing the corres-
ponding Fock space realization. The analysis from the standpoint of supersymmetric quantum mechanics
(SUSYQM), when applied to this problem, reveals that the model is also shape invariant. For a cer-
tain range of the system parameters, the two-body generalization of the Calogero model is shown to
admit a one-parameter family of self-adjoint extensions, leading to inequivalent quantizations of the sys-
tem.

PACS. 02.30.Ik; 03.65.Fd; 03.65.-w

1 Introduction

The structure and application of the Calogero model [1–5]
and its various descendants is a subject that receives much
attention. Since these are examples of many-body ex-
actly solvable models which appear in various contexts
in physics as well as in mathematics [6–33], it is of con-
siderable interest to find its generalizations which are
exactly solvable and integrable. In particular, it is ap-
pealing to investigate whether some sort of modification
of an exactly solvable model will affect its integrability.
Dealing with such many-body problems in one dimension
has appeared as particularly advantageous, since there
exist several algebraic techniques that are applicable in
this case, due to highly restrictive spatial degrees of free-
dom. It is also interesting to find out all possible boundary
conditions that render the Hamiltonian of the system self-
adjoint [34] and to analyze the nature of the corresponding
spectrum.
In this paper we investigate one special class of defor-

mation of the quantum Calogero model. As a prototype,
we study the two-body model as a particularly convenient
one for a complete elaboration of the dynamical struc-
ture of the problem, which is basically the same as for all
many-body problems with the underlying SU(1, 1) sym-
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metry. This specific case will be approached from more
different directions that include the Bargmann represen-
tation analysis, the ladder operators formalism and the
SUSYQM analysis which is based on the shape-invariance
property of the model in question. We also study the
self-adjoint extensions [34] of the two-body model and
show that for certain values of the system parameters
the model admits a one-parameter family of inequivalent
quantizations. At the end, the analysis will be expanded
to include the N -body case as well, with the result for
the complete spectrum of the three-body case stated ex-
plicitly. The emphasis will particularly be given to the
Bargmann representation approach which was put forward
in [35–38] in the context of the general method for in-
tegration of the multi-species and multi-dimensional gen-
eralizations of the Calogero model. This approach relies
heavily on the conformal invariance of the model under
consideration.

2 Bargmann representation analysis

In a recent paper [35–38], a general procedure for inte-
grating many-body quantum systems with the underlying
SU(1, 1) symmetry was set up. This procedure is based
on the fact that the N -body quantum system, possess-
ing conformal symmetry, can be mapped onto the set of
N harmonic oscillators in arbitrary dimensions and with
a common frequency ω. In this paper we investigate the
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system described by the Hamiltonian
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as a simple example of the model and techniques that were
put forward in [35–38]. The above Hamiltonian clearly rep-
resents two interacting particles in one-dimensional space
bounded by a harmonic force. For simplicity, the masses of
the particles are set equal to 1 and h̄= 1. It is convenient to
introduce the following set of operators:
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with V given by
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) . (3)

If we set µ = −λ in (1), we arrive at the model consid-
ered in [39]. The operators T+, T− , T0 in (2) are expressed
in terms of the polar coordinates x1 = r sinφ, x2 = r cosφ.
A brief inspection of the Hamiltonian (1) reveals that it be-
longs to the class of conformally invariant systems [35–38],
with the potential V being a real homogeneous function of
order −2, i.e., satisfying the relation

[ 2∑
i=1

xi
∂

∂xi
, V

]
=−2V . (4)

Indeed, it is straightforward to show that the genera-
tors (2) satisfy the SU(1, 1) conformal algebra

[T−, T+] = 2T0 , [T0, T±] =±T± , (5)

and that the Hamiltonian (1) can be represented in terms
of these as H = −T−+ω2T+. The problem of solving
for the eigenstates and for the spectrum of the Hamilto-
nian (1), Hψn,k = En,kψn,k, will now be transferred into
the two-oscillator eigenvalue problem for the Hamilto-
nian 2ωT0, which is usually referred to as a transition to
a Bargmann representation. This can be achieved by ap-
plying the transformation

H = 2ωST0S
−1, (6)

where

S = e−ωT+e−
1
2ω T− . (7)

After carrying out the transition to the Bargmann repre-
sentation, we have to solve the eigenvalue problem for T0,
with an additional constraint

T−∆n = 0 , T0∆n =
εn

2
∆n , n > 0 . (8)

As it stands, there are many eigenfunctions of T0. In fact,
every homogeneous function, no matter whether it is ratio-
nal or irrational, is an eigenfunction of T0. However, among
all of them we have to pick up only those that are annihi-
lated by T−. These form an infinite number of vacua ∆n,
upon which the equidistant towers of states are built, with
an elementary energy step 2ω between any two neighbor-
ing states. The ground state ψ0,0 of (1) is required to be
a square-integrable function. This will be the case if the
ground-state energy ωε0, ε0 > 0, is larger than

ω
2 , a condi-

tion which is connected with the existence of the critical
point [40–45]. Then we can write ψ0,0 = S∆0, where ∆0
is a homogeneous function of the lowest degree and of the
lowest energy ωε0. The other vacua ∆n, n > 0, of higher
degrees of homogeneity and with energies ωεn, are also
mapped to ψn,0 = S∆n. As far as the relations (5) are con-
cerned, the generators (2) can be viewed as creation and
annihilation operators acting on the eigenstates of T0. In
respect of this, the excited states ψn,k of (1) can be con-
structed as

ψn,k = ST+
k∆n , k = 0, 1, 2, . . . , n≥ 0 , (9)

with energies 2ω
(
k+ εn2

)
, and S given by (7). Thus, to con-

clude, we have all solutions grouped into equidistant towers
of states based on S∆n, n≥ 0, and for a given n≥ 0, the
spectrum is equidistant with an elementary step 2ω.
It may be noted that the Casimir operator of the

SU(1, 1) algebra (5), which is an element of the universal
enveloping algebra, is given by

C = T 20 −T0−T+T− , (10)

which commutes with the Hamiltonian, with the operators
on the right hand side being elements of the algebra (5).
The given system is thus integrable with the Hamiltonian
and the Casimir operator as the two conserved quantities.
By using (8)–(10), we see that

Cψn,k =
εn

2

(
εn

2
−1

)
ψn,k . (11)

Thus, it is evident that each tower of states built on
the vacuum ∆n provides an irreducible representation of
the SU(1, 1) algebra classified by the eigenvalues of the
Casimir operator C given in (11).
The aforementioned procedure will now be applied to

the model Hamiltonian (1) to yield the eigenstates and the
spectrum. First, we have to solve the equation T−∆n = 0,
n > 0, for the potential (3),

(
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(12)



S. Meljanac et al.: Quantization and conformal properties of a generalized Calogero model 877

In polar coordinates this equation reads(
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If we follow the lines of [39], by separating the variables as
∆n = u(r)Φ(φ), (13) reduces to the pair of equations
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The first one integrates to u∼ r
√
C+µ, while the second one

appears to have physically acceptable solutions only for the
special values of the coupling λ and the separation constant
C. In order to find these solutions, we skip to the angular
variable θ = φ− π4 , running through the interval 0≤ θ ≤ π,
and then factorize the function Φ,

Φn(θ) = (sin θ)
ν
fn(cos θ) = (sin θ)

ν
fn(x) , (16)

where the variable x= cos θ has been introduced and n is
the quantum number labeling the vacua ∆n. After insert-
ing (16) into equation (15), we get the equation for the
functions fn, n≥ 0,
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Physically acceptable solutions to the above equation
emerge for the special choices of the coupling and the sepa-
ration constants λ and C, respectively,

λ= 2ν(ν−1) , C = (n+ν)2, (18)

in which case (17) becomes the equation for the Jacobi
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n
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Thus, as a solution to (19) we have fn(x) = P
(a,a)
n (x), with

a= 2ν−12 . Altogether, this gives us the following expression
for the vacua in the Bargmann representation:
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In view of (5), the excited states in the Bargmann represen-
tation are obtained as
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With the help of the transformation (7), we now transfer
the results back (see (9)) to the original problem to obtain
the eigenstates of (1),
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For the moment, we shall not be bothered with the pro-
portionality constants, because they are irrelevant for the
discussion below. This is the reason why the similarity sign
appears in (22) and in the majority of subsequent rela-
tions. Later on, when we consider a construction of the
bosonic ladder operators, we shall have to take care of the
normalization of the wave functions and every single pro-
portionality factor will be important.
In calculating (22), we shall make use of the fact

that the successive application of the operator T− to the
states (21) leads to an expression of the form
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When l is equal to k, the above expression is, essentially,
the Bargmann vacuum ∆n, up to some constant. Due to
the first equation of (8), the next application of T− yields
zero, causing the series in (22) to terminate, T l−(T
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where the binomial coefficients in (24) have the following
meaning:(

α
β

)
=

α!

β!(α−β)!
≡
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Γ (β+1)Γ (α−β+1)
,

with Γ being the Euler gamma-function.
If we rearrange the sum in (24), we finally obtain the

result
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for the eigenfunctions of the Hamiltonian (1). In obtaining
this result, the sum in the second line of (25) is recog-

Fig. 1. Horizontal shifts in the Fock space of states are accomplished by the operators B† and B, whereas the vertical shifts are
provided by the pair of operators A+2 and A

−
2

nized [46, 47], up to the irrelevant factor (anyway, it enters
the overall normalization constant of the wave function),
as the power-series expansion for the associated Laguerre
polynomials,

Lαk (x) =
k∑
m=0

(−1)m

m!

(
k+α
k−m

)
xm, α >−1 . (26)

Considering the spectrum, as it is unaltered by the trans-
formation (7), we conclude that the eigenenergies of (1) are
nothing else but the degrees of homogeneity of the states
in the Bargmann representation.When T0 is applied to the

Bargmann vacua (20), we obtain 12 (
√
(n+ν)2+µ+1)∆n

and according to the second one of (8), this has to be equal
to 12εn. Knowing the dynamical structure of the problem
considered (see Fig. 1), and anticipating that for a particu-
lar vacuum labeled by n, the energies of the neighboring
excited states are separated by 2ω, the spectrum is easily
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found to be

En,k = ω(εn+2k) = ω

(√
(n+ν)

2
+µ+1+2k

)
, (27)

with ν being determined by (18).

3 Ladder operators

As was said previously, in order to find bosonic ladder op-
erators [48–51] related to the eigenfunctions we were in
search for, the knowledge on the detailed form of the nor-
malization factor is essential. Thus, after we utilize the
normalization properties of the Jacobi and Laguerre poly-
nomials, we are left with the normalized version of the
eigenfunctions (25) of the model Hamiltonian (1),

ψ̃n,k =

√√√√√√
ω
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Fig. 2. A pattern for constructing the eigenstates of the model Hamiltonian H from the eigenstates of the supersymmetric
partner Hamiltonians H(i)

For brevity, we shall omit the tilde-symbol from the wave
functions, and in the whole subsequent exposition it will
be understood that they are normalized to unity. As we
are searching for the operators that provide transitions be-
tween ground-state configurations of neighboring towers
in Fig. 2, we basically look for the operators connecting
Jacobi polynomials of successive order. A straightforward
way of deducing the form of these ladder operators (in
Fig. 2 they are designated by B and B†) is to invoke the
recursive relations [46, 47] for Jacobi polynomials,

(2n+a+ b)(1−x2)
d

dx
P (a,b)n (x)

= n[(a− b)− (2n+a+ b)x]P (a,b)n (x)

+2(n+a)(n+ b)P
(a,b)
n−1 (x) , (29)

2(n+1)(n+a+ b+1)(2n+a+ b)P
(a,b)
n+1 (x)

= (2n+a+ b+1)

× [(2n+a+ b)(2n+a+ b+2)x+a2− b2]P (a,b)n (x)

−2(n+a)(n+ b)(2n+a+ b+2)P
(a,b)
n−1 (x) . (30)

Using the recursive relations (29) and (30), we find re-
cursive relations for the normalized ground-state energy
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eigenfunctions ψn,0,

[
(n+ν)x+(1−x2)

d

dx

]
ψn,0

= (n+a)

√√√√√√
ω
√
(n+ν)2+µ+1n!(n+ν)Γ (n+2ν)

4ν−1Γ

(√
(n+ν)

2
+µ+1

)
Γ (n+ν+1/2)

2

× e−
ω
2 r
2
r
√
(n+ν)2+µ(1−x2)

ν/2
P
(a,a)
n−1 (x) , (31)[

(n−ν+2a+1)x− (1−x2)
d

dx

]
ψn,0

=
(n+1)(n+2a+1)

n+a+1

×

√√√√√√
ω
√
(n+ν)2+µ+1n!(n+ν)Γ (n+2ν)

4ν−1Γ

(√
(n+ν)

2
+µ+1

)
Γ (n+ν+1/2)

2

× e−
ω
2 r
2
r
√
(n+ν)2+µ(1−x2)

ν/2
P
(a,a)
n+1 (x) , (32)

where x= cos θ and a= ν− 12 .
The ladder operators b and b† that shift the neighboring

vacua into each other can be read from the above recur-
sions:
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with N being the number operator defined as

N
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]
= n
[
(1−x2)
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The explicit form of this operator can be found with the
help of (15) and looks like

N =
√
L2−ν , L2 ≡−

∂2

∂θ2
+

λ

1− cos2θ
. (36)

Since N is only angular dependent, relation (35) can be
straightforwardly extended to

Nψn,0 = nψn,0 . (37)

Straightforward calculation shows that the ladder opera-
tors b and b† are bosonic,

[b, b†] = 1 , (38)

together with

[N, b] =−b , [N, b†] = b†, (39)

resulting in the simple relation including the number
operator N = b†b. However, they are still not the lad-
der operators we are looking for because they do not
shift the neighboring eigenstates between each other,
as it is readily seen from (31) and (32). To overcome
this problem, it is convenient to consider a certain type
of operators that are realized by means of the similar-
ity transformation applied to the bosonic operators b
and b†

B = r
√
L2+µbr−

√
L2+µ, (40)

B† = r
√
L2+µb†r−

√
L2+µ. (41)

These operators have the desired properties, namely

Bψn,0 =
√
nψn−1,0 , B

†ψn,0 =
√
n+1ψn+1,0 , (42)

i.e., they are bosonic, satisfying

[B,B†] = 1 . (43)

Owing to the similarity-transformation kind of relation
between the operators b, b† and B, B†, the latter pair re-
tains the simple relation to the number operator, namely,
N =B†B. Having established the form of the opera-
tors (40) and (41), we have succeeded to describe the
horizontal shift in the Fock space of states, depicted in
Fig. 1 by horizontal arrows. The vertical shift in Fig. 1 still
remains to be described. However, it is easily accomplished
by the transformed Bargmann representation creation and
annihilation operators (2),

A±2 = ST±S
−1 =

1

2

(
ωT++

1

ω
T−

)
∓T0 , (44)

where T+, T−, T0 are conformal generators (2) and S is
the transformation (7). Of course, the state of the lowest
energy |0〉 ≡ ψn=0,k=0 is annihilated by both of the op-
erators B and A−2 . Now, the general Fock-space state of
Fig. 1 is easily obtained by the successive application of
the ladder operators (41) and (44) to the vacuum state
|0〉 ≡ ψn=0,k=0

ψn,k =
(
A+2
)k
(B†)

n
|0〉 , (45)

and in the coordinate representation it is explicitly de-
scribed by (28).
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4 SUSYQM analysis of the radial part

The model under consideration obviously possesses some
supersymmetric features and can be approached from the
point of view of the supersymmetric quantum mechan-
ics [52–58]. To see this, we start with the Hamiltonian (1)
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By making a transition to polar coordinates and by sepa-
rating the variables in the manner of Ψ(r, φ) = u(r)Φ(φ),
the Schrödinger equationHΨ =EΨ becomes

1

u
r2
∂2u

∂r2
+
1

u
r
∂u

∂r
−ω2r4−µ+2Er2 =

λ

1− sin2φ
−
1

Φ

∂2Φ

∂φ2

= C , (47)

where C is the separation constant. This leads to the fol-
lowing separated equations:

1

2

(
−
∂2

∂r2
−
1

r

∂

∂r
+ω2r2+

C+µ

r2

)
u=Eu, (48)

(
−
∂2

∂φ2
+

λ

1− sin2φ
−

)
Φ= CΦ . (49)

By introducing a new function ψ(r) =
√
ru(r), (48) simpli-

fies to

1

2

(
−
∂2

∂r2
+ω2r2+

C+µ− 14
r2

)
ψ =Eψ . (50)

From this equation we can immediately read the radial
Hamilton

Hr =
1

2

(
−
∂2

∂r2
+ω2r2+

C+µ− 14
r2

)

=
1

2

(
−
∂2

∂r2
+ω2r2+

α2− 14
r2

)
, (51)

where the parameter α=
√
C+µ is introduced, with C de-

termined by (18). The radial Hamiltonian (51) is shape
invariant and this property can be verified by introducing
the corresponding superpotential:

U = ωr−
α+ 12
r
, (52)

and by factorizing the Hamiltonian (51) with the help of

the operators A(0), A(0)
†
introduced in the following way:

A(0) =
1
√
2

(
d

dr
+U

)
=
1
√
2

(
d

dr
+ωr−

α+ 12
r

)
, (53)

A(0)
†
=
1
√
2

(
−
d

dr
+U

)
=
1
√
2

(
−
d

dr
+ωr−

α+ 12
r

)
.

(54)

Now we have

Hr =A
(0)†A(0)+ e0 , (55)

where e0 is given by (27) as e0 = En,0 = ω(α+1). Let us

now create a supersymmetric partner Hamiltonian H
(1)
r of

the HamiltonianHr ≡H
(0)
r ,

H(1)r =A
(0)A(0)

†
+ e0 . (56)

The factorization of (56) in the way pursued in (55) can be
achieved by introducing the operators

A(1) =
1
√
2

(
d

dr
+ωr−

α+ 32
r

)
, (57)

A(1)
†
=
1
√
2

(
−
d

dr
+ωr−

α+ 32
r

)
. (58)

It is easy to check that the two sets of operators, (53), (54)
and (57), (58), satisfy the SUSYQM shape-invariance
condition

A(0)A(0)
†
=A(1)

†
A(1)+ e1 , (59)

where e1 = 2ω.
A somewhat more detailed insight into the relation-

ships among the quantities we are dealing with here is ob-
tained by taking a look at Figs. 1 and 2. From Fig. 1, let us
take an arbitrary tower of states, which, for the sake of ar-
gument, we can take to be the tower built upon the vacuum
state labeled by n. This tower coincides identically with the
zeroth tower shown in Fig. 2, with the other towers in Fig. 2
being the eigenstates of the corresponding supersymmetric
partner Hamiltonians of the Hamiltonian (55). This cor-
respondence is made obvious (see Fig. 2) by labeling each
radial wave function by superscripts in parentheses. In this
way, the superscript i put on a particular radial function
designates that this function is the eigenfunction of the
super partner Hamiltonian H

(i)
r , and so on. Each super-

symmetric partner Hamiltonian H
(i)
r has its own set of

eigenstates ψ
(i)
n,k and its own spectrum E

(i)
n,k, with n, i fixed

and k being a nonnegative integer,

H(i)r ψ
(i)
n,k =E

(i)
n,kψ

(i)
n,k , k = 0, 1, . . . (60)

Note that the states from different towers but in the same
horizontal line have the same energy and are transformed
into each other by a simple pattern [52–56].
Having the whole picture set up, the basic vacuum (the

stateψ
(0)
n,0) is obtained from the condition that the operator

A(0) should annihilate it,

A(0)ψ
(0)
n,k=0 = 0 . (61)

Equation (61) integrates to

ψ
(0)
n,0 = r

α+ 12 e−
ω
2 r
2
. (62)
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In a similar way, the vacuum state of the i= 1 tower is ob-
tained as

A(1)ψ
(1)
n,k=0 = 0 , (63)

leading to

ψ
(1)
n,k=0 ∼ r

α+ 32 e−
ω
2 r
2
. (64)

The first excited state ψ
(0)
n,k=1 and the corresponding en-

ergy E
(0)
n,k=1 of the original Hamiltonian (51) follow as

ψ
(0)
n,k=1 ∼A

(0)†ψ
(1)
n,k=0 , (65)

giving

ψ
(0)
n,k=1 ∼ e

−ω2 r
2
rα+

1
2 [ωr2− (α+1)]

= e−
ω
2 r
2
rα+

1
2Lα1 (ωr

2) , (66)

E
(0)
n,k=1 =E

(1)
n,k=0 = e0+ e1 = e0+2ω , (67)

where Lαk (ωr
2) is the associated Laguerre polynomial and

the last equation follows from the combined application
of (56), (59) and (60).
By following the same line, we are led (see Fig. 2) to

a pattern for constructing a general radial excitation to-
gether with the corresponding excitation energy. First, we
introduce the pair of operators

A(k) =
1
√
2

(
d

dr
+ωr−

α+k+ 12
r

)
, (68)

A(k)
†
=
1
√
2

(
−
d

dr
+ωr−

α+k+ 12
r

)
. (69)

The conjecture, now, is that after applying (69) j times
successively,

ψ
(k−j)
n,j ∼A(k−j)

†
. . . A(k−2)

†
A(k−1)

†
ψ
(k)
n,0 ,

we get

ψ
(k−j)
n,j ∼ rα+

1
2 e−

ω
2 r
2
rk−j

j∑
s=0

(−1)s
(
j
s

)
s!

(
α+k
s

)
zj−s,

(70)

where the variable z = ωr2 has been introduced. This ex-
pression can be proved by induction. For j = 1, the expres-
sion (70) reduces to

ψ
(k−1)
n,1 ∼ rα+

1
2 e−

ω
2 r
2
(ωrk+1− (α+k)rk−1) ,

which coincides identically with ψ
(k−1)
n,1 ∼A(k−1)

†
ψ
(k)
n,0. For

the step of the induction, let us assume that (70) holds

for j. Then we have

ψ
(k−(j+1))
n,j+1 ∼A(k−j−1)

†
ψ
(k−j)
n,j

=
1
√
2

(
−
d

dr
+ωr−

α+k− j− 12
r

)

×

(
rα+

1
2 e−

ω
2 r
2
rk−j

j∑
s=0

(−1)s
(
j
s

)
s!

(
α+k
s

)
zj−s
)

=
√
2rα+

1
2 e−

ω
2 r
2
rk−j−1

×

( j∑
s=0

(−1)s
(
j
s

)
s!

(
α+k
s

)
ωj−s+1r2j−2s+2

−
j∑
s=0

(−1)s
(
j
s

)
s!

(
α+k
s

)
(α+k− s)ωj−sr2j−2s

)
.

By rearranging the sums and by using the properties of
the binomial coefficients, the expression written above
becomes
√
2rα+

1
2 e−

ω
2 r
2
rk−j−1

×

(
(ωr2)

j+1
+(−1)j+1j!

(
α+k
j

)
(α+k− j)

+

j∑
s=1

(−1)s
(
j+1
s

)
s!

(
α+k
s

)
(ωr2)

j+1−s
)

=
√
2rα+

1
2 e−

ω
2 r
2
rk−(j+1)

×
j+1∑
s=0

(−1)s
(
j+1
s

)
s!

(
α+k
s

)
(ωr2)

j+1−s
,

and this is exactly (70) for j→ j+1. Now that we have
verified relation (70), the eigenstates of the radial Hamilto-

nianHr ≡H
(0)
r follow directly from (70) by setting j = k,

ψ
(0)
n,k ∼ r

α+ 12 e−
ω
2 r
2
k∑
s=0

(−1)s
(
k
s

)
s!

(
α+k
s

)
zk−s. (71)

By rearranging the sum in the above expression, (71) is rec-
ognized as an expansion (26) for the associated Laguerre
polynomials,

ψ
(0)
n,k ∼ r

α+ 12 e−
ω
2 r
2
Lαk (ωr

2) , (72)

as it should be, to coincide with the results obtained
previously by pursuing other methods. To complete the
SUSYQM analysis, we turn onto the spectrum of the
model. This analysis, of course, has to yield the same result
as obtained before. While carrying out these considera-
tions, one should note that the shape-invariance condi-
tion (59) holds at the general level, i.e.,

A(k−1)A(k−1)
†
=A(k)

†
A(k)+ ek ,

ek = 2ω , k = 1, 2, 3, . . . , (73)

as well as that the operators A(k) annihilate the corres-
ponding vacua:

A(k)ψ
(k)
n,0 = 0 , k = 1, 2, 3, . . . . (74)
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Also, as Fig. 2 suggests, the energies of the states in differ-
ent towers but in the same line are the same:

E
(0)
n,k =E

(1)
n,k−1 =E

(2)
n,k−2 = . . .=E

(k)
n,0 . (75)

Following the construction pattern for the supersymmet-
ric partner Hamiltonians H

(k)
r , their form is immediately

deduced from the shape-invariance condition (73):

H(k)r =A
(k)†A(k)+

k∑
j=0

ej , k = 1, 2, 3, . . . . (76)

If we apply (76) to ψ
(k)
n,0, while simultaneously anticipat-

ing the relations (60), (74) and (75), we get the spectrum
forHr as

E
(0)
n,k =

k∑
j=0

ej = e0+2ωk= ω(2k+α+1) , (77)

coinciding with (27), as expected.

5 Self-adjoint extension

In this section we investigate the self-adjoint extensions [34]
of the radial part of the Hamiltonian. Physically this means
that we would find all possible boundary conditions for
which the radial Hamiltonian is self-adjoint. This would be
done by an appropriate analysis of the differential operator
for the radial Hamiltonian. We shall see that the system
admits a one-parameter family of self-adjoint extensions
for certain values of the system parameters. We start with
a rederivation of the energy eigenvalues discussed in Sect. 2
and this method would be carried over when we discuss
self-adjoint extensions.
The Schrödinger equation obeyed by the Hamilto-

nian (1) of the system is given by (47). The operator
involving the radial coordinate r in the l.h.s. of (47) satis-
fies the eigenvalue equation

[
−
∂2

∂r2
−
1

r

∂

∂r
+ω2r2+

µ+C

r2

]
u(r) = 2Eu(r) , (78)

where C = (n+ν)2 as given in (18). We shall assume that
n≥ 0, ν ≥ 0.
In order to proceed, we make the following

transformations:

u(r) = rαe−
ωr2

2 χ(r) , α=+
√
µ+C , (79)

t= ωr2, (80)

and assume that µ+C > 0. In these new variables, the ra-
dial equation (78) becomes

[
t
d2

dt2
+(α+1− t)

d

dt
−

(
α+1

2
−
E

2ω

)]
χ= 0 , (81)

whose solution is given by [46, 47]

χ(r) =M

(
α+1

2
−
E

2ω
, α+1, ωr2

)
, (82)

where M denotes the confluent hypergeometric function.
The above solution in general consists of an infinite series.
However, in order for the solution to be square integrable,
this series must terminate, which happens when

α+1

2
−
E

2ω
=−k , (83)

where k is a positive integer. From this, and using the defi-
nitions of b and C, we obtain

En,k = ω

(√
(n+ν)

2
+µ+1+2k

)
, (84)

which is the same as (27). Also, substituting (83) in (82)
and using the relation between the confluent hypergeomet-
ric and Laguerre functions [46, 47], we see that

χ(r) =
k!

(α+1)k
L

√
(n+ν)2+µ

k (ωr2) , (85)

where the symbol (p)n means

(p)n = p(p+1)(p+2) . . . (p+n−1) , (p)0 = 1 . (86)

The full solution of the radial equation is obtained by sub-
stituting (85) in (79).
We now consider the self-adjoint extensions of the oper-

ator Or where

Or =
1

2

[
−
∂2

∂r2
−
1

r

∂

∂r
+ω2r2+

µ+C

r2

]
. (87)

To begin with, we briefly recall the salient points of von
Neumann’s theory of self-adjoint extensions [34].
Let T be an unbounded differential operator acting

on a Hilbert space H and let D(T ) be the domain of T .
The inner product of two elements, α, β ∈H is denoted by
(α, β). Let D(T ∗) be the set of ϕ ∈ H for which there is
a unique η ∈ H with (Tξ, ϕ) = (ξ, η)∀ξ ∈D(T ). For each
such ϕ ∈D(T ∗), we define T ∗ϕ= η. The operator T ∗ then
defines the adjoint of the operator T and D(T ∗) is the
corresponding domain of the adjoint. The operator T is
called symmetric or Hermitian if and only if (Tϕ, η) =
(ϕ, Tη)∀ϕ, η ∈D(T ). The operator T is called self-adjoint
if and only if T = T ∗ andD(T ) =D(T ∗).
We now state the criterion to determine if a symmetric

operator T is self-adjoint. For this purpose, let us define the
deficiency subspaces K± ≡Ker(i∓T ∗) and the deficiency
indices n±(T )≡ dim[K±]. Then T falls in one of the follow-
ing categories:

1) T is (essentially) self-adjoint if and only if (n+, n−) =
(0, 0).

2) T has self-adjoint extensions if and only if n+ = n−.
There is a one-to-one correspondence between the self-



884 S. Meljanac et al.: Quantization and conformal properties of a generalized Calogero model

adjoint extensions of T and the unitary maps from K+
intoK−.

3) If n+ �= n−, then T has no self-adjoint extensions.

We now return to the discussion of the operator Or.
This is an unbounded differential operator defined in R+.
The operator Or is a symmetric operator on the domain
D(Or) ≡ {ϕ(0) = ϕ′(0) = 0, ϕ, ϕ′ absolutely continuous,
ϕ ∈ L2(rdr)}. Next we would like to determine if Or is
self-adjoint. We shall focus on the case where α > 0.
The deficiency indices n± are determined by the num-

ber of square-integrable solutions of the equations

O∗ru±(r) =±iu±(r) , (88)

respectively, where O∗r is the adjoint of Or and the func-
tions u±(r) span the deficiency subspacesK±, respectively.
Note that O∗r is given by the same differential operator as
Or. From dimensional considerations we see that the r.h.s.
of (88) should be multiplied by a constant with dimension
of length−2. We shall henceforth choose the magnitude of
this constant to be unity by an appropriate choice of units.
Equation (88) can be written as

[
t
d2

dt2
+(α+1− t)

d

dt
−

(
α+1

2
±
i

2ω

)]
χ±(r) = 0 ,

(89)

where

u±(r) = r
αe−

ωr2

2 χ±(r) . (90)

The solutions u±(r) of (88) must be square integrable. We
are thus led to choose the solutions given by

χ±(r) = U
(
g±, α+1, ωr

2
)
, (91)

where

U
(
g±, α+1, ωr

2
)
=A

[
M
(
g±, α+1, ωr

2
)

Γ (d±)Γ (α+1)

− (ωr2)−α
M
(
d±, 1−α, ωr2

)
Γ (g±)Γ (1−α)

]
,

(92)

with g± =
α+1
2 ∓

i
2ω , d± =

1−α
2 ∓

i
2ω and A =

π
sin(π(α+1)) .

Consequently we obtain that

u±(r) = r
αe−

ωr2

2 U
(
g±, α+1, ωr

2
)
. (93)

The functions u±(r) are general solutions of (88) with the
property that as r→∞, u±(r)→ 0 sufficiently fast such
that they are square integrable at infinity. In order to inves-
tigate the square integrability of the functions u±(r) near
r= 0, first note that as r→ 0,M(g±, b+1, ωr2)→ 1. Using
these, we see that, as r→ 0,

|u±|
2rdr→

[
A1r

(1+2α)+A2r+A3r
(1−2α)

]
dr , (94)

where A1, A2 and A3 are constants independent of r.
From (94) it is clear that the functions u±(r) are not square

integrable near r = 0 when α ≥ 1. Thus when α ≥ 1, we
have the deficiency indices n+ = n− = 0 and the operator
Or is essentially self-adjoint in the domain D(Or). How-
ever, when 0 < α < 1, the functions u±(r) are square in-
tegrable near r = 0 and hence for the whole range of r.
Thus, when 0< α< 1, we have the deficiency indices n+ =
n− = 1. In this case, according to von Neumann’s theory,
the operator Or is not self-adjoint in the domain D(Or)
but admits a one-parameter family of self-adjoint exten-
sions which are labeled by eiz, where z ∈R (mod 2π). The
domain of self-adjointness is given by Dz(Or) =D(Or)⊕
{a(u+(r)+ eizu−(r))}, where a is an arbitrary complex
number.
Before proceeding, let us discuss the nature of the pa-

rameter ranges for which the system is either essentially
self-adjoint or admits self-adjoint extensions. From the
condition on α, we see that the self-adjoint extension exists
when

0< µ+(n+ν)2 < 1 . (95)

The eigenvalues of the angular equation are characterized
by the integer n ≥ 0. For each fixed value of n, (95) gives
a region on the right half of the µ–ν plane for which self-
adjoint extensions exist. Let us call this region on the
µ–ν plane the nth band. It is evident that such bands,
corresponding to different values of n, do not overlap. Con-
sequently, if the values of the coupling constants µ and ν
are fixed on the nth band, then the system will admit a
self-adjoint extension only if the eigenvalue of the angu-
lar equation is taken as n. It is interesting to note that
there exists a finite gap between any two consecutive bands
labeled by the integers n and n+1. Since (95) is not satis-
fied for any eigenvalue of the angular equation within such
band gaps and also for the region µ+ν2 > 1, the system is
essentially self-adjoint in these regions. Thus a band struc-
ture, with an infinite number of bands in the right half
of the µ–ν plane, represents the parameter ranges where
the system admits self-adjoint extensions. In Fig. 3 we have
drawn the first two of such an infinite number of bands (i.e.,
the n= 0 and n= 1 band).
In order to discuss the solutions of the eigenvalue prob-

lem, first note that in the parameter range where the sys-
tem is essentially self-adjoint, the spectrum has already
been found before, in (82) and (84).We now proceed to find
the spectrum of Or in the domain Dz(Or) for the parame-
ter range where the system admits self-adjoint extensions.
To that end, first note that the solution of the eigenvalue
equation (78) which is square integrable at infinity is given
by

u(r) =Brαe−
ωr2

2 U
(
g, α+1, ωr2

)
, (96)

where g = α+12 −
E
2ω andB is a constant. In the limit r→ 0,

using (92), we get that

u(r)→AB

[
rα

Γ (d)Γ (α+1)
−

ω−αr−α

Γ (g)Γ (1−α)

]
, (97)
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Fig. 3. The n= 0 and n= 1 bands, representing the parame-
ter ranges where a self-adjoint extension is possible, are drawn.
An infinite number of such bands exist in the right half of the
µ–ν plane

where d= 1−α2 −
E
2ω . Again, as r→ 0, we see that

u+(r)+e
izu−(r)→A

[
rα

Γ (α+1)

(
1

Γ (d+)
+
eiz

Γ (d−)

)

−
ω−αr−α

Γ (1−α)

(
1

Γ (g+)
+
eiz

Γ (g−)

)]
.

(98)

Fig. 4. A plot of (99) using Math-
ematica with ω = 0.25, α = 0.25 and
z = −1.5. The horizontal straight line
corresponds to the value of the r.h.s.
of (99)

If u(r) ∈Dz(Or), then by comparing the coefficients of dif-
ferent powers of r in (97) and (98), we get

f(E)≡
Γ
(
1−α
2 −

E
2ω

)
Γ
(
1+α
2 −

E
2ω

) ρ2 cos
(
z
2 −σ1

)
ρ1 cos

(
z
2 −σ2

) , (99)

where Γ
(
1+α
2 +

i
2ω

)
≡ ρ1eiσ1 and Γ

(
1−α
2 +

i
2ω

)
≡ ρ2eiσ2 .

For a given choice of the system parameters, (99) gives the
energy eigenvalue E as a function of the self-adjoint pa-
rameter z. For a fixed set of system parameters, different
choices of z lead to inequivalent quantization and to the
spectrum for this model in the parameter range where it
admits a self-adjoint extension. In general, the energy E
cannot be calculated analytically and has to be obtained
numerically by plotting (99), a sample of which is given in
Fig. 4.
It is interesting to note that the usualN -body Calogero

model with the confining interaction leads to a similar ra-
dial Hamiltonian, whose self-adjoint extension has been
studied before [33]. An alternative treatment of the ra-
dial problem in the SUSYQM framework, in terms of the
self-adjoint extension of the supercharges (first order oper-
ators), has been given in [59]. Although the radial opera-
tors in these works share the formal structure, the associ-
ated physical interpretations vary, e.g. the appearance of
the band structure in the parameter space of the present
model (as shown in Fig. 3) is absent in the case of the usual
Calogero model with confining interaction.
We conclude this section with the following

observations.

1. If Γ
(
1+α
2 −

E
2ω

)
=∞, we obtain Ek = ω(2k+α+1),

where k is a positive integer. For this to happen, the
self-adjoint extension parameter z must take the value
π+2σ1, and for this choice of z we recover the usual
eigenvalues of this system.

2. For any other choice of z, the spectrum of Or must
be obtained numerically, and it is seen that the cor-
responding spectrum is not equispaced in the quantum
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number k. Moreover, generically there is a single nega-
tive energy solution. This is due to the fact that for
the parameter range where this model admits a self-
adjoint extension, and for a generic value of z, SU(1, 1)
can no longer be implemented as a spectrum generating
algebra.

3. Although we have assumed that µ+C > 0, in gen-
eral this restriction is not necessary. If this is equal to
zero, the system can still be shown to admit a one-
parameter family of self-adjoint extensions by using
an analysis similar to the one presented here. Also, if
µ+C is strongly negative, then this problem might re-
quire a renormalization [60–62], which will be studied
elsewhere.

6 Generalization to the N-body case

Following the same procedure as for the two-body case, let
us now investigate some important features of the N -body
case. In particular, we are interested in the general struc-
ture of the spectrum which basically has the same struc-
ture as that shown in Fig. 2, except that for the N -body
case, the Bargmann vacua depend onN −1 quantum num-
bers. The problem under consideration is described by the
Hamiltonian

H =−
1

2

N∑
i=1

∂2

∂x2i
+
1

2
ω2

N∑
i=1

x2i

+
λ

2

∑
i<j

1

(xi−xj)
2 +

µ

2
∑N
i=1 x

2
i

, (100)

with λ = 2ν(ν− 1). In [63] some other deformations of
the basic inverse-square interparticle-distance model are
considered, but these models do not possess the SU(1, 1)
symmetry. This makes them unsuitable for the treatment
within the scope of the techniques based on the transition
to the Bargmann representation. Owing to the underly-
ing conformal structure of the model (100), the spectrum
and the eigenstates can be deduced by employing the same
techniques as before. These are based on the fact that the
Hamiltonian (100) has some special favorable properties
which allow us to link it with the set of decoupled oscilla-
tors that is much easier to handle with. In order to do this,
we introduce the set of operators

T+ =
1

2

N∑
i=1

x2i ,

T− =
1

2

N∑
i=1

∂2

∂x2i
−
λ

2

∑
i<j

1

(xi−xj)
2 −

µ

2
∑N
i=1 x

2
i

,

T0 =
1

2

N∑
i=1

xi
∂

∂xi
+
N

4
, (101)

satisfying (5). The connection of the Hamiltonian (100)
with the set of decoupled oscillators [64–68], described

by the operator T0, is provided through the transform-
ation (7), where now T+ and T− are from (101). As a side
remark, let us note that this is exactly what we mean
when we are referring to the transition to the Bargmann
representation. After this transition we are left with the
equation T−∆= 0, which has to be solved in order to find
all Bargmann vacua. Of course, they will now depend on
N −1 quantum numbers. The remaining quantum number
required for the complete determination of the eigenfunc-
tions (eigenfunctions of (100) are fully specified with N
quantum numbers) will describe excitations within each
tower of states built over the corresponding ground state
(see Fig. 2). These excitations are governed by the collec-
tive relative radial motion of the particles and are a uni-
versal feature [35–38,40–42] of all models possessing the
underlying SU(1, 1) symmetry.
In finding the solution to the equation T−∆ = 0, one

can make a factorization

∆=
∏
i<j

(xi−xj)
ν
φ , (102)

to obtain an equation for φ,

1

2

N∑
i=1

∂2

∂x2i
φ+ν

∑
i<j

1

xi−xj

(
∂

∂xi
−
∂

∂xj

)
φ

−
µ

2
∑N
i=1 x

2
i

φ= 0 . (103)

One solution to this equation is of the form

φ∼

(
N∑
i=1

x2i

)β
, (104)

with

β =
νN −νN2−N+2+

√
(N −2+νN2−νN)2+4µ

4
.

(105)

It is clear that for each ordering of particles the solu-
tion (104) does not have nodes and hence it is the solution
for the ground state. As far as we are interested in the
energy and the wave function of the ground state and all
vertical (see Fig. 1) excitations over it, the solution (104) is
all we need to deduce the spectrum andwave functions over
the lowest lying vacuum in Fig. 1. In order to obtain the
ground state of the model Hamiltonian (100) and to con-
struct all its wave functions ψ0,k,0,... ,0 belonging to the first
tower of Fig. 1, we have to use the transformation (7) to
return back from the Bargmann representation describing
the set of decoupled oscillators,

ψ0,k,0,... ,0 ∼ e
−ωT+e−

1
2ω T−

(
(T+)

k
∆
)

=
(−1)kk!

(2ω)
k

(
N∑
i=1

x2i

)β

×
∏
i<j

(xi−xj)
νe−ωT+Lαk (2ωT+) ,

(106)
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where Lαk (2ωT+) are the associated Laguerre polynomials
with

α=
1

2

√
(N −2+νN2−νN)2+4µ . (107)

The corresponding part of the spectrum follows from the
equation T0∆ =

ε0
2 ∆, with T0 and ∆ having the form

of (101) and (102), respectively, and is given by

E0,k,0,... ,0 = ω(ε0,0,... ,0+2k)

= ω

(
1+
1

2

√
(N −2+νN2−νN)2+4µ+2k

)
.

(108)

Here ε0 is an abbreviation for ε0,0,... ,0 designating the en-
ergy of the ground state, that is, the energy of the lowest of
the Bargmann vacua which were seen to depend on N −1
quantum numbers.
Of course, there still remains the problem of finding

all solutions to (103). Obviously, there are many solutions
to (103) and each of them would define one particular
Bargmann vacuum. Once we find all these solutions, we
have completed the task of integrating the model Hamil-
tonian (100) because all excited states built over some
particular solution ∆n1,n3,... ,nN to (103) are described by
an associated Laguerre polynomial in the radial variable
2ωT+. So, the associated Laguerre polynomial will appear
to describe excitations in each tower of states shown in
Fig. 1 and, as we have seen, this is a common feature for all
conformally invariant models.
If we look at the problem of integration of (103) more

closely, we are naturally led to the question on the superin-
tegrability [69] of the Hamiltonian (100). This question is
closely related [69] to the problem of the separability and
even multi-separability of the corresponding Schrödinger
equation. Namely, a superintegrable system is one that ad-
mits more integrals of motion than it has degrees of free-
dom, and if it is characterized by a complete set of com-
muting quadratic integrals of motion, then it is also multi-
separable. This means that its Schrödinger equation (i.e.
the Hamilton–Jacobi equation in the classical case) allows
for the separation of variables in more than one orthogonal
system of coordinates. Since it is known that the N -body
Calogero model [69] is superintegrable, it would be of inter-
est to see whether the extra term in (100) changes anything
in this respect. To get the answer to this question, it is most
convenient to consider the three-body simplification. If we
write the determining condition for the Bargmann vacua,
T−∆= 0, in spherical coordinates and separate the radial
part from the angular one, we are confronted with the set
of relations

∂2

∂r2
u+
2

r

∂

∂r
u−
C+µ

r2
u= 0 , (109)

λ(G(θ, φ)−C)Fn,m−
1

sin θ

∂

∂θ

(
sin θ

∂Fn,m

∂θ

)

−
1

sin2θ

∂2Fn,m

∂φ2
= 0 , (110)

where C is the integration constant and

G(θ, φ) =
1

sin2θ(1− sin2φ)
+

1

(sin θ cosφ− cos θ)2

+
1

(sin θ sinφ− cos θ)2
. (111)

In the above procedure it is understood that the Bargmann
vacua depend on two quantum numbers, as is readily ex-
pected from the general consideration, and they are sepa-
rated as

∆n,m = u(r)Fn,m(θ, φ) . (112)

While (109) is easily integrated to u ∼ 1√
r
r1/2
√
1+4(C+µ),

the angular equation remains a much more difficult prob-
lem to solve. As has already been said, this problem
amounts to the question of the superintegrability of the
three-body version of the Hamiltonian (100) and conse-
quently to the problem of the separability of (110). Nev-
ertheless, we can deduce the whole spectrum by relying
only on the expression (112) and on the fact that the spec-
trum has to become a Calogero one in the limit when the
parameter µ approaches zero. With these observations in
mind, the whole spectrum for the three-body variant of the
Hamiltonian (100) is readily found to be

En,k,m = ω

(
1+2k

+
1

2

√
1+4(3ν+n+3m)(1+3ν+n+3m)+4µ

)
.

(113)

7 Conclusion

We have considered a conformally invariant deformation
of the quantum Calogero model with the special emphasis
on the deformation of the two-body model. Owing to the
fact that the model under consideration possesses SU(1, 1)
symmetry, we were able to apply the techniques based on
the correspondence between some particular conformally
invariant model and the set of decoupled oscillators, the
procedure which is referred to as the Bargmann represen-
tation analysis. This has provided us with the possibility
to construct the creation and annihilation operators acting
on the Fock space, thereby allowing us to investigate the
dynamical structure of the problem.
We have also analyzed the self-adjoint extensions of

the radial Hamiltonian of the two-body problem and have
found the region in the parameter space where the system
admits a one-parameter family of self-adjoint extensions.
In the situations where the system admits self-adjoint ex-
tensions, SU(1, 1) can no longer in general be implemented
as the spectrum generating algebra, and the correspond-
ing spectrum is not equispaced in the quantum number k.
However, for a special value of the self-adjoint extension
parameter, SU(1, 1) can be recovered as the spectrum gen-
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erating algebra, in which case the spectrum becomes eq-
uispaced in k. It is plausible that the angular part of the
Hamiltonian given in (49) might also admit self-adjoint
extensions, analogous to the angular Hamiltonian of the
three-body Calogero model as discussed in [70].
Finally, we have carried out the generalization to in-

clude the N -body problem as well. Here we have found
the ground state, which is the lowest of all Bargmann
vacua, and excitations over it, together with the corres-
ponding spectrum. Also, we have found that all excita-
tions are basically the same, all of them having the ori-
gin in the collective relative radial motion of the particles,
and they are described by the associated Laguerre poly-
nomials in the collective radial variable. It appears that
this is, in fact, a common feature of all models possess-
ing the underlying SU(1, 1) symmetry. The only problem,
but in no case a simple one, that has been left is to find
all Bargmann vacua, that is, to find all solutions to (103).
We have seen that this problem is closely related to the
problem of the superintegrability of the Hamiltonian in
question. To somehow clear up the situation, we havemade
the simplification to consider the three-body problem. Al-
though we have not found how all Bargmann vacua look
like in the three-body problem, we were able to deduce the
complete spectrum for this case. All that was needed was
the information on the underlying conformal invariance of
the model and the explicit form of the radial part of the
Bargmann vacua wave functions, together with noting that
the Calogero spectrum has to be reproduced in a smooth
limit when the deformation parameter tends to zero. We
hope that the issues that are left unresolved, as is the case
with the structure of the Bargmann vacua in a general N -
body problem, will be addressed in the near future, at least
for the three-body case.
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